Unraveling the origins of catalyst degradation in non-heme iron-based alkane oxidation.

نویسندگان

  • Michaela Grau
  • Andrew Kyriacou
  • Fernando Cabedo Martinez
  • Irene M de Wispelaere
  • Andrew J P White
  • George J P Britovsek
چکیده

A series of potentially tetradentate and pentadentate ligands modelled on BPMEN has been prepared and their iron(II) bis(triflate) complexes have been isolated and characterised by spectroscopic and crystallographic techniques (BPMEN = N,N'-bis(pyridylmethyl)ethylenediamine). Changes to the BPMEN ligand have invariably led to complexes with different coordination modes or geometries and with inferior catalytic efficiencies for the oxidation of cyclohexane with H2O2. The reaction of an iron(II) complex containing a pentadentate BPMEN-type ligand with O2 has resulted in ligand degradation via oxidative N-dealkylation and the isolation of a bis(hydroxo)-bridged dinuclear iron(III) complex with a picolinate-type ligand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkane hydroxylation by a nonheme iron catalyst that challenges the heme paradigm for oxygenase action.

A nonheme iron catalyst catalyzed stereoselective oxidation of alkanes with H2O2 with remarkable efficiency and exhibiting an unprecedented high incorporation of water into the oxidized products. The present results challenge the canonical description of oxygenases, the standard oxo-hydroxo tautomerism that applies to heme systems and serves as a precedent for alternative pathways for the oxida...

متن کامل

Towards robust alkane oxidation catalysts: electronic variations in non-heme iron(ii) complexes and their effect in catalytic alkane oxidation.

A series of non-heme iron(ii) bis(triflate) complexes containing linear and tripodal tetradentate ligands has been prepared. Electron withdrawing and electron donating substituents in the para position of the pyridine ligands as well as the effect of pyrazine versus pyridine and sulfur or oxygen donors instead of nitrogen donors have been investigated. The electronic effects induced by these su...

متن کامل

Mechanistic Insight into Alcohol Oxidation by High-Valent Iron-Oxo Complexes of Heme and Nonheme LigandsThis research was supported by the Ministry of Science and Technology of Korea through Creative Research Initiative Program.

High-valent iron–oxo species are frequently invoked as the key intermediates in the catalytic oxidation of organic substrates by heme and nonheme iron mono-oxygenases. In the case of heme-containing enzymes such as cytochromes P450, oxoiron(iv) porphyrin p-cation radicals have been proposed as active oxidants that effect a number of oxidation reactions, which include alkane hydroxylation, olefi...

متن کامل

Degradation of Low Concentrations of Formaldehyde in Sono Catalytic Ozonation Advanced Oxidation Processes using Zero-valent Iron

The purpose of the current study is to evaluate formaldehyde degradation ratio with various methods in a batch reactor. In this work, the ozonation, sonolysis (ultrasonic), and ozone sonolysis, sono catalytic ozonation (SCO), and nano zero-valent iron catalyst processes were investigated for removal of formaldehyde. In addition, the influence of important factors such as pH (5–9), ultrasonic po...

متن کامل

Non-heme iron hydroperoxo species in superoxide reductase as a catalyst for oxidation reactions.

The non-heme high-spin ferric iron hydroperoxo species formed in superoxide reductase catalyzes oxidative aldehyde deformylation through its nucleophilic character. This species also acts as an electrophile to catalyze oxygen atom transfer in sulfoxidation reactions, highlighting the oxidation potential of non-heme iron hydroperoxo species.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 45  شماره 

صفحات  -

تاریخ انتشار 2014